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SUMMARY 

New implicit finite difference schemes for solving the time-dependent incompressible Navier-Stokes equations 
using primitive variables and non-staggered grids are presented in this paper. A priori estimates for the discrete 
solution of the methods are obtained. Employing the operator approach, some requirements on the difference 
operators of the scheme are formulated in order to derive a scheme which is essentially consistent with the initial 
differential equations. The operators of the scheme inherit the fkdamental properties of the corresponding 
differential operators and this allows a priori estimates for the discrete solution to be obtained. The estimate is 
similar to the corresponding one for the solution of the differential problem and guarantees boundedness of the 
solution. To derive the consistent scheme, special approximations for convective terms and div and grad operators 
are employed. Two variants of time discretization by the operator-splitting technique are considered and compared. 
It is shown that the derived scheme has a very weak restriction on the time step size. A lid-driven cavity flow has 
been predicted to examine the stability and accuracy of the schemes for Reynolds number up to 3200 on the 
sequence of grids with 21 x 21,41 x 41, 81 x 81 and 161 x 161 grid points. 

KEY WORDS: incompressible viscous flow; numerical methods; non-staggered grids; consistent approximations of operators; 
operator-splitting technique 

1. INTRODUCTION 

The most commonly used approach to study incompressible and slightly compressible viscous flows is 
based on SIMPLE-like procedures (see e.g. Reference 1) and the MAC-type staggered grid.’ For this 
grid all scalar variables including the pressure are located at the centre of a control volume, whereas 
velocity components are referred to its corresponding faces. Using such a grid, it is easy to construct a 
difference scheme for the continuity and momentum equations and then to derive the discrete Poisson 
equation for the pressure (or pressure correction) with the standard compact difference Laplace 
operator by means of algebraic transformations of the initial grid equations. 

However, the use of non-staggered grids seems to be very attractive. It is apparent that on going 
from a staggered grid to a collocated one, we can essentially simplify the numerical algorithms and 
reduce their computation cost. Further, methods based on the non-staggered grid are more uniform and 
thus allow the easy use of local grid adaptation, non-orthogonal co-ordinates and multigrid techniques 
in order to increase the solution accuracy. Finally, the numerical implementation of boundary 
conditions becomes more accurate and natural in this case. 
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Simple usage of the collocated grid and second-order central difference approximations for the 
divergence and gradient operators leads to so-called ‘checker-board’ effects’ in the pressure and 
velocity fields if the velocity-pressure decoupling is performed via the Poisson equation for the 
pressure. Instead of the standard Laplace operator (five-point in the 2D case) one obtains it on an 
extended stencil with splitting of grid points into some non-intersecting sets. Pressure and velocity 
oscillations occur in this situation.’ 

Many different methods have been proposed by various authors (see e.g. References 3-1 3) to avoid 
these checker-board effects on the non-staggered grid. However, all these techniques employ (in an 
explicit or implicit way) non-standard approximations of the continuity equation. As a rule, non- 
standard interpolation of the velocity values at control volume faces is utilized to form the discrete 
continuity equation. Thus the discrete continuity equation perturbed by inserting additional terms with 
pressure values is actually used in calculations. This technique sometimes leads to physically incorrect 
velocity values at control volume faces. 

New difference schemes for viscous incompressible flow predictions on non-staggered grids are 
developed and investigated in the present work. The main feature of the schemes is their consistency 
with the initial differential equations in terms of the fundamental properties of the corresponding 
operators. 14,15 The operator approach is used to study approximations for the Navier-Stokes equations 
and some requirements on the difference operators are formulated. The required properties of the 
operators allow apriori estimates for the discrete solution to be obtained. The estimate is similar to the 
corresponding one for a solution of the differential problem and guarantees boundedness of the 
solution. 

To derive difference operators with the desired properties, a special second-order approximation for 
convective terms is used. Several variants of consistent approximations for the div and grad operators 
are considered. In this part of the investigation the particular emphasis is on the first-order opposite 
differencing (forward and backward differences) for these operators that leads to the Poisson equation 
with the standard compact stencil on the non-staggered grid. A study of second-order approximations 
will be presented in the next part of the work. 

The operator-splitting technique’”’ is employed to obtain a time discretization which allows 
efficient implementation. This approach is in common use in non-linear mechanics and CFD (see e.g. 
References 19-23) for velocity-pressure decoupling, implementation of non-linearity, treatment of 
additional source terms in the Navier-Stokes equations, etc. Two variants of the operator-splitting 
technique (Pea~eman-Rachford~~ and Do~glas-Rachford~~ types) are considered in detail and 
compared in this work. The stability and accuracy of the schemes are demonstrated with the solution of 
a lid-driven cavity flow problem. 

2. DIFFERENTIAL PROBLEM 

The unsteady Navier-Stokes equations for an incompressible fluid flow in a 2D closed domain 
a piecewise smooth boundary iKz can be written in the dimensionless form 

with 

av 1 
- + V(v)v + gradp - -div gradv = f(x, f), at Re 

x E Q, 0 c t < 0, 

divv=O, X E Q ,  O < t < 0 ,  (2) 

with no-slip, no-permeability boundary conditions on the fixed rigid boundary 

v(x, t )  = 0, x E an, 0 < t < 0, (3) 
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and the divergence-free initial conditions 

v(x, 0) = Vg(X), x E sz. (4) 

Here v=(vl, y) is the velocity vector, t is the time, x =  (x,, x2) represents the Cartesian co- 
ordinates, p is the pressure, Re is the Reynolds number and f is the volumetric force vector. It should be 
noted that the initial and boundary conditions must be prescribed consistently. The only singularity 
allowed is with the boundary conditions for the tangential velocity, whereas in respect of all other 
initial data and boundary conditions this initial boundary value problem has to be well posed.26 The 
two-dimensional equations are considered here only for simplicity. There is no problem in extending 
the results presented below to the 3D case. 

In equation (1) the operator Y(v) represents the convective terms and can be written in various 
forms. The advective (non-divergence) form is 

Y(v)v = (v - grad)v. 

Here and below we use the terminology of Gresho.26 Using the incompressibility constraint (2), we can 
rewrite Y(v) in the divergence form 

V(v)v = div(w) 

or in the skew-symmetric form 

V(v)v = 4 [(v * grad)v + div(w)], ( 5 )  

which is simply the half-sum of the two previous forms. It should be noted that all these forms are 
equivalent in the continuum case but generally not equivalent in the discrete case. 

An additional relation can be introduced for pressure uniqueness: 

p(x, t)dx = 0, 0 < t < 0. J, 
Thus we have now the complete system of equations (1H4) and (6)  for the determination of a fluid 
flow in the domain 52 at any time instant t > 0. 

3. A PRZORI ESTIMATE FOR THE SOLUTION OF THE DIFFERENTIAL PROBLEM 

Let us introduce the Hilbert space 2 = L 2 ( 0 )  of functions with the scalar product 

(24 w), = Jnu(x)w(x)dx, m, w(x> E Jf ,  

and the corresponding norm 11 u )I = J((u, u ) ~ ) .  For vectors u we can define the Hilbert space 2' as 
the direct sum 2' = 2 @ Jf with the scalar product 

and the norm 11 u 11 =J((u, u)~) .  
Let 2: be the subspace of Z2 containing solenoidal functions, i.e. functions for which the 

incompressibility constraint (2) holds. We can rewrite equations (1) and (2) in this subspace as a single 
equation in the operator form 

(7) 
dv 
dt 
- + Y ( v ) v + 9 % + N v = f ,  0 < t < 0, V E J f I ,  
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where f(x, t )  belongs to 2'. Here we use the notation dldt instead of a/&, since equation (7) is not 
formally a partial differential equation. We use the following notation for the operators: Y(v), the 
convective transport operator in the skew-symmetric form (5 ) ;  9, the gradient operator 9 v =  
gradp-we can formally consider the operator 9 as one operating on the velocity v E if:; N, the 
diffusive transport operator -Re-' div grad. 

The incompressibility constraint is already incorporated in this operator equation. We emphasize 
that this equation has been introduced only in order to reduce the number of formulae. Next we use for 
the pressure gradient the notation 9v, i.e. formally it is written as an operator on the divergence-free 
velocity. In such a reduced formulation of equations the fundamental property of differential operators 
that the gradient and divergence operators are conjugate to each (with minus sign) can be 
treated as the skew-symmetric property of the operator 9. 

It is well known (see e.g. References 14 and 15) that these operators in the subspace if: of functions 
with zero values on the boundary 8 2  have the basic properties 

Y(v) = -V*(v) (skew-symmetric), 

9 = -9* (skew-symmetric), 

N = M* > 0 (symmetric and positive). (10) 

It should be emphasized that properties (8HlO) are valid only for the vectors from if$ which are 
solenoidal and have uniform zero values on the boundary. Next, if the form (5) of the operator Y(v) is 
used, Y(v) will be skew-symmetric for any vector v with zero values on the boundary, not only for the 
solenoidal vectors. To verify the skew-symmetric property of the operator 9, one can write 

( 9 v ,  v ) ~  = (gradp, v ) ~  = -(p, diw), = 0. 

Here we use the following well-known fact: an operator d is skew-symmetric if and only if 
(dq, cp)=O for any cp from the considered space. Property (10) holds owing to the fact that the 
diffusive transport operator is the Laplace operator with constant coefficient - 1IRe. 

To get the simplest a priori estimate for the solution of problem (7) with the initial conditions (4), let 
us multiply equation (7) by v and take the scalar product in 2;: 

Using the above-mentioned basic properties (8HlO) of the operators Y(v), 9 and N and the 
Schwarz inequality, we obtain 

Thus, using the initial conditions (4), the following estimate can be derived: 

Estimate (1 2) provides boundedness of the problem solution. It also provides unconditional stability 
of the trivial (zero) solution in respect of the right-hand side and initial data for this non-linear 
problem. 

4. DISCRETE PROBLEM 

Let us construct finite difference operators satisfying properties (8H10) of the parent operators. To 
simplify the presentation, we shall use a grid with uniform spacings hl and h2 in the rectangular 
domain R = { (xl, x2) I 0 < x, < l,, a = 1, 2). 
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Let w be the internal point set 

0 = { ( X l i , X 2 j )  ( X l i  = ( i  - l )hl ,  x2j = (j - l )hz ,  hl = lI/(NI - l), h2 = 12/(N2 - l), 
i = 2 ,  ..., N l - l , J = 2 ,  ..., N2-1}, 

ao be the set of boundary points (without comer points) and W be the set of internal and boundary 
points, 0 = w U a0 (see Figure 1). 

As in the differential case we can again introduce the finite-dimensional Hilbert space H with the 
scalar product (we use the same notation for the discrete case) 

and the Hilbert space H2 as the direct sum H2 = H  61 H with the corresponding scalar product 
2 

and the norm 

llYll = J i ( Y 9  Y)2). 
We shall use the standard notation for the first- and second-order spatial  approximation^.'^.'^ For 

example, the foward, backward and central differences with respect to the co-ordinate x1 are 

We shall denote by A the discrete Laplace operator with the standard compact five-point stencil: 

In the subspace H of grid functions with zero values on the grid boundary a0 the Laplace operator A is 
symmetric and positive definite, A = A* > 0 (see e.g. References 17 and 18). 

Let us consider also the space HI as the subspace of H2 containing only solenoidal vector functions. 
The solenoidal hc t ions  satisfy some discrete analogue of the incompressibility constraint, 

diVhW = 0, X E W * ,  (14) 

where w* is a subset of W (specified below). 

0 1, 

Figure 1. Grid arrangement showing the internal point set w (0) and the set of boundary points aw (0) 
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Let us consider the semidiscrete (continuous in time and discrete in space) problem 

(15) 

w(x, 0) = vo(x), x E w. (16) 

dw 
-+V(w)w+Pw+Nw=f ,  WEH:, 0 < t  <a, 
dt 

We introduce such a reduced formulation of equations in exactly the same manner as has been done 
above for the differential problem (7). It should be noted that the original Dirichlet boundary 
conditions for the velocity (and only for the velocity) are already incorporated in this semidiscrete 
problem. 

In accordance with the skew-symmetric form (5 ) ,  let us consider the next second-order 
approximation of the convective terms, 

a = l  

It is easy to show that 
(V(W)Y, Y) = 0 

for any w, y E H2 with zero values on aw, i.e. this discrete operator inherits the skew-symmetric 
property of the parent differential operator V(v). 

Let us consider the next discrete operator 
1 

Re 
N = - A ,  

where A is taken as (13). This operator inherits property (10) of the corresponding operator N ,  i.e. 
N = N* > 0, owing to the fact that A = A* > 0. 

Now we shall construct the skew-symmetric discrete operator P. The difference operator P is defined 
by the expression 

Pw=gradg ,  WEH:. (20) 

(Pw, w)2 = 0, w EH:. (21) 

The operator P will be skew-symmetric if the following equation is valid: 

In order to obtain the skew-symmetric operator P for which (21) is valid, one has to consider 
consistent approximations for the grad and div operators. The consistency of the operators gradh and 
divh lies in the fulfilment of the equality 

(grad#, w ) ~  = -@, divhw);, (22) 

where 

It is evident that equality (21) for the operator P defined by (20) will be valid if the operators gradh and 
divh are constructed so that (22) is fulfilled and divhw = 0 at x E w*. Thus P will be skew-symmetric in 
this case. 

In order to obtain mutually consistent operators gradh and divh, we shall define the operator gradh 
and then utilize equation (22) to derive the concrete form of the operator divh and the subset o* E 0. 

Choosing the backward differences for the gradient operator as 

grad# = @i,, p i2 ) ,  x E 0, (24) 
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we obtain from (22) 

Thus we have the forward differences for the divergence operator in this case as 

divhw = ( W I ) , ~  + ( W Z ) ~ ~ ,  x E o*. (25) 

It is clear from (22) that the pressurep and the operator divh in the form (25) must be defined at points 
of the set w* (see Figure 2), where 

o* = ( ( x l i ,  x2,) l x l i  = (i - l)hl, x2, = ( j  - l )h2,  i = 1, 2, . . . , Nl - 1, 
j = 1 ,  2, . . . ,  N 2 - 1 ,  i + j # 2 } .  

Thus the couple 

gradg = (pi, 7 Pizh divhw = ( ~ 1 ) ~ ~  + ( w d X 2 ,  (26) 

where divh is defined in w*, provides the skew-symmetric property of the operator I? 

approximations exist for these coupled operators. The other three couples are 
It is easy to see that in the 2D case four different combinations of the forward and backward 

gradhP = @XI 1 P X A  diVhW = (w):, + ( ~ 2 ) : ~ ~  (27) 

From the theoretical standpoint all these combinations (26x29)  are equivalent. However, the accuracy 
of the computed results may be different for the various cases when a particular flow is predicted. 

It should be noted that in spite of the first-order truncation error the idea of employing opposite 
differences for these terms is quite popular in CFD. A good example is the paper by Reggio and 
Camarer~,~ who used forward and backward differences for mass and pressure gradients respectively 
on the basis of an upwinding strategy. Other applications are given in references cited in that work. 

The use of the standard central difference approximation for gradh leads to the same approximation 
for divh and yields for the pressure evaluation the discrete Laplace operator 

X 
t 

1, 

0 5 ,  

Figure 2. The set w* (0)  
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with the extended stencil and the above-mentioned checker-board effects. Only first-order differences 
will be considered in detail in the present paper. The use of central differences in the framework of the 
developed approach will be discussed in the next part of the study. 

Thus the considered difference operators V(w), P and N defined by (1 7), (26) and (1 9) respectively 
inherit the main properties of the corresponding differential operators, namely 

V(v) = -V*(v) (skew-symmetric), (30) 

P = -P* (skew-symmetric), (31) 

N = N* > 0 (symmetric and positive definite). (32) 
One can easily obtain an a priori estimate 

Ilw(x, Oll I Ilvo(x)II + J’ Ilf(xs 4llh 
0 

for the semidiscrete problem (1 5), (1 6) by repeating calculation (1 1). 

5. TIME DISCRETIZATION BY OPERATOR SPLITTING 

Now time discretization of the space-discrete problem (I 5) ,  (1 6) and its numerical implementation will 
be considered. It is well known that the operator-splitting is a very popular approach to 
constructing efficient numerical methods for unsteady problems. This approach is in common use in 
CFD as well (see e.g. References 19-21). Among recent contributions the papers by Maday et al.” and 
Natarajanz3 should be mentioned. In the present study this general methodology will be used to solve 
the problem of velocity-pressure decoupling. 

We shall split the operators of the momentum equation into two parts associated with velocity and 
pressure respectively and rewrite the semidiscrete operator equation (1 5) as 

(33) 
dw 
dt 
-+(A1+Az)w=f, O < t < @ ,  

where 

A1 = V(w) + N ,  A2 = P. (34) 
The operator V(w) is non-linear. The fundamental property (30) has been proved for this operator for 

any w. Thus we can linearize this operator using the value w“ from the previous time level, i.e. 
everywhere below A l  = V(w”) + N. Here superscripts n and n + 1 are used to denote successive time 
levels of the time grid f = n t ,  n =  1, 2, . . . , N, t =@. 

It is well known from the operator theory of difference schemes18 that additive schemes (including 
ADI) with two operators A l  and A2 are unconditionally stable for linear problems with Al 2 0 and 
Az 2 0. In the considered case, in view of the basic properties (30)-(32), we have A1 > 0 and 
A2 = -A; (the proof of the fact that N > 0 and hence A l  > 0 can be found in Reference 27, Vol. 2, p. 3 1 
along with other results of the operator theory of difference schemes). Thus we can use several variants 
of the operator-splitting technique to construct unconditionally stable (in a linear sense) schemes. 

Let us consider the known factorized ~ c h e m e ” ~ ’ ~  for equation (33), 
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By introducing an intermediate velocity field, we can pass on from the factorized scheme (35) to the 
additive scheme. If the superscript n + $ denotes intermediate values, then, defining 

w"+1/2 = ow"+' + (1 - o)w" + oZzAz(W"+' - w"), 
we can rewrite equation (35) as 

wn+l -w" 
z 

+A'w"+'/Z +Az[aw"+' + (1 -a)#] = f". (37) 

Setting o = 0.5, we obtain an additive scheme that is similar to the well-known Peaceman-Rachford 
schemez4 for two-dimensional heat conduction problems. This method has formally second-order 
accuracy with respect to time. Setting o = 1, we obtain an additive scheme for the momentum equation 
that is similar to the well-known Douglas-Rachford scheme.25 It was found from calculations that this 
scheme is certainly preferred over the Peaceman-Rachford-type scheme, so more attention is paid 
below to the Douglas-Rachford-type scheme. 

For the numerical implementation of the Douglas-Rachford-type scheme we obtain from (36) and 
(37) for a= 1 

w"+l - w" 
+A'w"+'/2 +A2w"+' = f", 

z 
x E 0, (39) 

diVhW"+' = 0, X E W * .  (40) 

This scheme is very similar to the SIMPLEC-type pressure correction (predictor-corrector) algorithm 
in the time-dependent formulation. It has formally first-order accuracy with respect to time. 

So far in this section we have not taken into account any particular form of the difference operators. 
Now we shall take this into consideration and discuss the numerical realization of the scheme (38)- 
(40). To implement the scheme (38)-(40), one can subtract equation (38) from (39) and obtain the so- 
called stabilizing correction equation 

w"+' -w"+'/2 
+Az(w"+' - w") = 0,  x E 0, (41) z 

or, taking into account that A2 = gradh, 

Let us express from (42) as 

= $'+'/' - 7 .  gradh@"+' -p"), x E W ,  (43) 

and substitute it into the incompressibility constraint (40), taking into account that W"+' = 0 on the 
boundary aW. 

Denoting Sp =p"+' -p", we derive the Poisson equation to evaluate the pressure correction Sp as 

(44) 
1 .  diVhgradh6p = -dlVhw"+'/2, W E W ,  
z 
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where 

diVhW = (WI) ,~  + (W2lx2,  divh@adh& = 6Pilxl + dpi212 * 

It should be noted again that the original Dirichlet boundary conditions for the velocity (and only for 
the velocity) are already incorporated in this discrete problem. There is no problem with boundary 
conditions for the pressure correction Poisson equation in such an a p p r o a ~ h . 2 ~ ~ ~ ~  

More strictly, at grid points adjacent to the right and upper boundaries the difference equations with 
the four-point stencil are obtained and they do not include the boundary points. However, equation (44) 
will be valid at these points if, in order to simplify the implementation of the method, we extend the 
definition of the pressure correction Sp to the set y = W\w* by setting 

x1 = 11, ~ = ( j - l ) h z ,  j = 2 ,  3, ..., N2-1, 
SPi, = 0, x2 = 1 2 ,  x l = ( i - l ) h l ,  i = 2 ,  3,  ..., N1-1. 

Equations (45) may be treated as the Neumann boundary conditions at the right and upper boundanes 
for the Poisson equation (44). 

At the left and lower boundaries, taking into account the boundary condition #+I = 0 at x E aw and 
expression (43) adjacent to the boundary points, we derive from the incompressibility constraint 

(45) 
Sp,, = 0, 

i = 2 ,  3, ..., Nl - 1, j =  1, i =  1, j = 2 ,  3, ..., N2- 1 ,  

the equations 

1 n + 1 / 2  

1 n + 1 / 2  

( S P ~ , ) ~ , ~ = ; ( W I ) ~ , ~  , j = 2 ,  3 ,  ..., 7%-1, 

( & G ~ ) ~ , ~  = ; ( w z ) ~ , ~  i = 2, 3,  . . . , NI - 1, 
(46) 

, 

which are treated as the Neumann boundary conditions at the left and lower boundaries for this 
equation. Then we have the Poisson equation (44) with the Neumann boundary conditions (45) and 
(46) to evaluate the pressure correction Sp when the intermediate velocity #+”* is known. 

The final equations are now as follows: 

(i) evaluation of the intermediate velocity, 

(ii) calculation of the pressure correction, 

SPi,,, + Spi*, = 1 t 1  ((WR+ )XI + (w;+’/*),,), x E w ,  

X E W ’  
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(iii) evaluation of the velocity and pressure at the next time level, 

with the boundary and initial condition 

wo = "O(X), x E w. (54) 

The additional condition ( S O ) ,  which is similar to equation (6) in the differential problem, is 

It should be noted that for the Neumann problem (48x50) the compatability constraint must be 
introduced only for pressure correction (and pressure) uniqueness. 

satisfied. This constraint is an analogue of the compatibility constraint 

/*fdx+S*(P=O 

for the differential problem: 

(55) 

- q ,  X E r n .  (56) aP div gradp = - f ,  x E S Z ,  _ -  
an 

It is easy to show that for the problem (48)-(50) the compatability constraint is automatically satisfied. 
This fact results from the above-mentioned correct formulation of the discrete Poisson equation via 
algebraic  transformation^.^^,^^,^^ The popular way to derive the boundary conditions for the pressure 
by considering the momentum equations at the boundary does not lead to satisfaction of this constraint 
by default. Some additional effort must be made in order to satisfy it.4 

In just the same way we can implement the scheme with the Peaceman-Rachford-type splitting 
procedure. This scheme includes the Neumann problem for the pressure correction Poisson equation as 
well. 

6. A PRZORZ ESTIMATE FOR THE SOLUTION OF THE DISCRETE PROBLEM 

Now we shall obtain an a priori estimate for the solution of the discrete problem (38x40) with the 
Douglas-Rachford-type splitting procedure. We shall essentially use properties (30)-(32) of the 
operators V(w), P and N. 

Let us rewrite equations (38) and (41) in the form 

( E  + ~Al)w"+'/~ = (E - ~ A 2 ) w "  + rf", (57) 

(E + ~A2)w"" = + TA~W",  (58) 

where E is the identity operator. 

inequality. We obtain the inequality 
Let us multiply equation (57) by (E + T A ~ ) ~ " ~ ' " ,  take the scalar product and use the Schwarz 

ll(E+ TAI )~+" * I I  d ll(E - ~ A d f l I l  + ~l l f " l l ,  (59) 
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which will be used below. Transform the right-hand side of (58) as 

w" + + zA2w" = w" + + ;(E + zA2)wn - i ( E  - zA2)w" 

+ ;(IT + zA2)w" - t(E + TA')W"+ 
z - - + -f" 
2 

=$E+zA2)HP +;(E-zA,)w"+"2+Zfn, z 

When the rearranged right-hand side is substituted, equation (58) becomes 

(61) 
z 

ZA2)@+' = $ ( E  + zA2)wn + t ( E  - ZAl)W"+'/2 + -f". 
2 (E + 

Multiply this equation by (E + zA2)yYn+', take the scalar product and use the Schwarz inequality to 
obtain 

(62) 
z 

II(E+TA2)W"+'II 5 ill(E+zAz)w"II +#l(E-  zA~)w"+'/~ll + ~ l l f " l l .  

It is well known that for any operator B 0 the inequality 

ll(E - Blrll < ll(E + BlYll (63) 

is valid. Thus, taking into consideration this inequality and inequality (59), we can evaluate the second 
term on the right-hand side of (62) as 

In order to derive the last inequality, in this inequality sequence we have used (63) once more. 
Taking account of expression (64) in (62), we can rewrite (62) as 

ll(E + TAZ)w"+' I1 < ll(E + zA2)w"lI + I I f " I 1 .  (65) 

Using the skew-symmetric property of the operator A2, which is identical with P, and Pw = grad#, it is 
easy to show that 

II(E + zA2)w1I2 = ((E + W w ,  ( E  + ~ A 2 ) w ) ~  = (w, wI2 + z2(gradhp, 

= llwIl2 + z2llgradhpIl2. (66) 

Substitution of (66) into inequality (65) gives 

IIW"+'IIT d Ilw"llT + z l l f n l l ,  (67) 

where 

llwllr = d?llwl12 + t211gTadhpl12). 

From (67) we can derive the next estimate 

where w 0 =vo(x) andpo=p(x, 0). 
This estimate is similar to estimate (12) for the corresponding differential problem. It is 

unconditional, i.e. it was derived without any restrictions on the parameters z and h of the discrete 
problem. Estimate (68) provides boundedness of any solution of the scheme (38)-(40). It also provides 
unconditional stability in respect of the right-hand side and initial data, but only for the trivial (zero) 
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solution owing to the fact that the equations are non-linear. We should note that the estimate does not 
guarantee convergence of the discrete solution. 

For the solution of the Peaceman-Rachford-type scheme (36), (37) a similar a priori estimate is 
valid. 

7. NUMERICAL RESULTS 

The methods developed in the present study have been tested on the lid-driven cavity flow of a viscous 
incompressible fluid. Time-dependent as well as steady state (as a limit of the time evolution process) 
solutions have been obtained and extensively compared with the benchmark results of Ghia et aL3' 
derived on a very fine grid of 257 x 257 points. Flow regimes with Re = 100,400,1000 and 3200 have 
been calculated on the sequence of grids with 21 x 21, 41 x 41, 81 x 81 and 161 x 161 points. The 
method (47)-(52) with the Douglas-Rachford-type splitting procedure was used to calculate all 
solutions depicted below in figures and tables. All predictions have been performed on an IBM PC 486 
personal computer. 

It should be noted that a non-zero tangential velocity is prescribed at the upper boundary in this 
problem. It is clear that in the discrete case it is easy to reformulate this problem, so we shall derive the 
problem with uniform zero boundary conditions (by means of some modifications of the right-hand 
side). Thus all the above-mentioned properties of the scheme operators are valid for our calculations. 

The systems of algebraic equations were solved in this work using the following iterative solvers:31 a 
modified incomplete Choleslq conjugate gradient method (ICCG) for the pressure correction Poisson 
equation and a preconditioned conjugate gradient method (ORTHOMlN( 1)) for the asymmetric 
momentum equations. A very efficient implementation of these popular methods, designed on the basis 
of recent developments in this field, has been employed in our predictions for the symmetric32 and 
asymmetric33 linear grid equations. 

To obtain steady state solutions, the following criterion for the calculation termination has been 
used: 

llw7ll < E ,  (69) 

where w, = ((4" - $)/T, ($+I - u;)/z)  and E = 
quiescent state was used as the initial condition for time integration. 

everywhere except for Figure 10. The 

The aims of the calculations were 

(a) to study the dependence of the solution accuracy and the convergence rate on the number of grid 

(b) to investigate how for a particular problem the solution accuracy depends on the actual choice of 

(c) to compare the Douglas-Rachford- and Peaceman-Rachford-type schemes. 

Figures 3-6 present the predicted (a) streamlines and (b) isobars (via equidistant isolines) for 
Re = 100,400,1000 and 3200 respectively derived on the grid with 16 1 x 16 1 points. Good agreement 
with the benchmark results of Ghia et d3' is obtained not only in the global flow patterns for various 
Re but also in the local flow characteristics. 

Table I gives for the steady state solutions the maximum absolute streamhction value 1 Y I - and 
the error norm JIw - wbenchJ)* = max 1 wij - w!Th 1 x 100% as a function of the Reynolds number 
and grid size, where w is the velocity from our predictions, wbenCh is the benchmark numerical solution 
of Ghia et aL3' and the error norm 11 . (I* is calculated over the points of the horizontal and vertical 
centrelines using the corresponding velocity component (the horizontal velocity at the vertical 
centreline and vice versa; see Figure 7). Only the best results (among the four possible combinations 

points and the time step size z 

the divh and gradh approximation among the four possible combinations (26)-(29) 
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( a )  (b) 

Figure 3. (a) Streamlines and (b) isobars for Re= 100 

(26H29)) are presented in this table. Formally the schemes under consideration have first-order 
accuracy in space. The results presented in Table I show that the order of accuracy of the schemes is 
indeed the first (asymptotically). In spite of only first-order accuracy, the scheme provides reasonable 
agreement with the benchmark solution (at least at Re d 1000) on the fine grid. 

The results in Figure 7 and Table I1 demonstrate the dependence of the solution accuracy on the 
actual choice of the divh and gradh approximation among the four possible cases of consistent first- 
order approximations. Figure 7 shows the predicted velocity profiles-the four full curves correspond 
to the four different approximations (26H29Falong the vertical and horizontal cavity centrelines for 
Re = 400 on the grids with (a) 2 1 x 2 1 and (b) 8 1 x 8 1 points. The benchmark solution of Ghia et ~ 1 . ~ '  
is also depicted in this figure via symbols for comparison. It should be noted again that all these 
approximation combinations (26x29) are equivalent from the theoretical viewpoint but yield 
somewhat different prediction accuracies. The solution accuracy depends essentially (on a coarse grid) 
on the orientation of the moving cavity wall with respect to the direction of differencing in the above- 
mentioned couples of discrete operators. Moreover, it is not possible to decide Q priori which couple is 

(a) (b) 

Figure 4. (a) Streamlines and (b) isobars for Re = 400 
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Figure 5. (a) Streamlines and (b) isobars for Re= 1000 

preferable for a particular flow, but evidently (compare (a) and (b) in Figure 7) the distinction between 
the four possible approximations decreases drastically with refinement of the computational grid. In 
Table I1 the values of I Y I and IIw - whenchII+ are presented for the worst and best cases at 
Re = 400 on various grids. It is clear that for this particular problem the predictions in the best case are 
twice as accurate as those in the worst case. 

The effects of the spatial grid size and the time step size 7 on the time-dependent solution accuracy 
have also been studied. The history of 1 Y I max is shown in Figure 8 for various time steps 7 at 
Re= 1000 on the 81 x 81 grid. The results indicate that the time-dependent solution is sufficiently 
accurate at 7 < 0.25, but a much larger time step can be used if only the steady state solution is 
studied. For 7 > 3 the solution becomes oscillating and the convergence criterion (69) is not reached. 
Figure 9 demonstrates the effect of the spatial grid size on the time evolution of 1 Y 1 - at the same 
Reynods number and fixed 7 = 0.1. The time step 7 is chosen small enough in order to reduce the 
effect of the truncation error due to time discretization. 

(a) (b) 

Figure 6. (a) Streamlines and (b) isobars for Re = 3200 
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1 x 

(b) 

Figure 7. Velocity profiles along centrelines for Re=400 on (a) 21 x 21 and (b) 81 x 81 grids M I  curves, present work for 
various approximations; symbols, Ghia et a2.k benchmark solution30 

The dependence of the time step number required for the achievement of the steady state solution 
(with the same convergence criterion (69) but E = lod4) on the time step size r is presented in Figure 
10 for Re = 1000 and various spatial grids. It is clear, that (i) the number of time steps increases very 
weakly with increasing spatial grid size and (ii) there is an optimal time step value (in the vicinity of 
7 = 1 for this particular problem and flow regime) that provides the minimum number of integration 
steps. It should be noted that the scheme provides stable calculations at a much larger time step than 
the optimal one and the limit of stability depends very weakly on the number of grid points. In some 
papers the normalized time step u = r/h2Re, which is associated with the diffusion limit of the explicit 
scheme, was used in order to characterize the stability restriction on the time step r. For the present 
method on the grid with 161 x 161 points and Re = 1000, for example, the maximum value allowing 
stable computations was a= 64, which is much higher in comparison with traditional computational 
procedures. Moreover, the parameter a is not suitable for characterizing the stability restriction owing 
to the fact that in our scheme r is not linearly proportional to h2. 

It should be noted again that we solve the time-dependent incompressible Navier-Stokes equations 
and the analysis provided here indicates that the methods developed are absolutely stable in a linear 
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Table I. Dependence of solution accuracy on spatial grid size for various Reynolds numbers 

400 0.1 139 

1000 0.1 179 

3200 0.1204 

100 0.1034 21 x 21 
41 x 41 
81 x 81 

161 x 161 
21 x 21 
41 x 41 
81 x 81 

161 x 161 
21 x 21 
41 x 4 1  
81 x 81 

161 x 161 
21 x 21 
41 x 41 
81 x 81 

161 x 161 

0.085 
0.095 
0.099 
0.1014 
0-08 1 
0.095 
0.104 
0.109 
0.068 
0.085 
0.100 
0.109 
0.046 
0.056 
0.082 
0.099 

449  
2.41 
1.55 
1 .00 
12.29 
6.44 
3.09 
2.87 

19.7 
12.06 
8.28 
4.09 

25.89 
25.02 
19‘75 
10.14 

Table 11. Dependence of solution accuracy on grid 
size and stencil: worsthest values for Re = 400 

21 0.05810.081 22.76112.29 
41 0.08210.095 12416.44 
81 0.09810.104 6.3513.09 

257* 0.1139 

I*~In(IL 

0.12 

0.09 

0.06 

0.03 

0.00 
0.0 12.5 25.0 37.5 51 

t i m e  

Figure 8. History of I Y I for Re = 1000 at various time steps: 1, T = 0.25; 2, T = 0.1; 3, T = 0.5; 4, r = 1; 5, T = 2; 6, T = 3 
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0.12 

0.09 

0.06 

0.03 

(1.1" 
0.0 12.5 25.0 3: 
0'030 (1.1" 0.0 12.5 25.0 3: 

5 50. 

t i m e  

Figure9. Dependenceof IYl,,ongridsizeforRe=1000: 1, 161 x 1 6 1 ; 2 , 8 1 ~ 8 1 ; 3 , 4 1 ~ 4 1 ; 4 , 2 1 ~ 2 1  

sense. Returning to the above-mentioned figures, it is easy to see that these schemes allow us to use a 
much larger time step for integration in time in comparison with traditional computational techniques 
for unsteady convection-diffusion problems (see Figure 8) and that the stability limit for our schemes 
does not depend practically on the grid size (see Figure lo), i.e. this limit exists only as a result of the 
non-linearity of the Navier-Stokes equations, which is not resolved in our linearized difference 
schemes. Thus, to study transient flow problems, we can choose a time step only from considerations 
of the temporal accuracy which is necessary to describe a non-linear phenomenon in detail. 

To validate these new schemes on transient problems, the unsteady cavity problem (i.e. the flow 
inside a cavity with an impulsively started lid) has been studied numerically and the results compared 

25i , 1 , 1 -;'61x161 1 
0 1 2 3 4 

- 81 x 81 

- 41 x 41 

a 

7 

Figure 10. Number of integration steps N for achievement of steady state solution versus time step size T for Re= 1000 on 
various grids 
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Table 111. Increase in time step size T during 
integration in time for unsteady cavity problem 

t O < t < l  l < t < 2  2 < t < 4  t > 4  

‘5 0.02 0.04 0.05 0.1 

with time-accurate solutions obtained by Son and G ~ o d r i c h . ~ ~  The results in Reference 34 are very 
accurate as they were obtained using a scheme of second-order accuracy in space and time with fully 
implicit implementation of non-linearity and incompressibility constraints at every time level (via some 
iterative procedure). Moreover, to provide high resolution of the evolving boundary layer, it was 
suggested in that work to use a varying time step with stepwise increases during time integration. Our 
predictions of this problem on the grid with 16 1 x 161 points for Re = 400 and 800 are presented in 
Figures 1 1  and 12 respectively. In these figures the development of the flow is shown via the flow 
patterns at time instants t=0.1, 1 ,  2, 4 and 8. Along with the equidistant streamlines, the 
streamfunction extrema are reported as well. The time variation of the time step size employed in our 
calculations is presented in Table 111. It was obtained in a similar way as in Reference 34 but for our 
grid size and Re = 800. Comparison of our solutions for Re = 400 depicted in Figure 1 1  with the 
accurate results (see Figure 5 of Reference 34) indicates good temporal accuracy of our predictions. 
Good agreement is obtained for the time evolution of primary and secondary vortices. Secondary 
vortices near the lower wall comers appear as early as f = 2 and grow in size (see values of in 
Figure 1 1).  A more complicated history of the flow evolution is evident in Figure 12 for Re = 800. All 
these results demonstrate the efficiency of the proposed method in application to transient flow 
problems. 

All the above-mentioned (both theoretical and practical) results have been obtained for Dirichlet 
boundary conditions, i.e. for a somewhat restricted class of fluid flow problems. To examine the 
robustness of the present methods and the possibility of modelling channel flows with ‘open’ boundary 
conditions, the flow over a backward-facing ~tep~’-’~ has been predicted and compared for a wide 
range of Reynolds numbers without any theoretical proofs. 

This flow has been studied numerically using a uniform 16 1 x 4 1 grid and the Douglas-Rachford- 
type splitting procedure (38), (39) in the problem formulation by Kim and M ~ i n . ’ ~  A parabolic 
velocity profile is prescribed at the inlet, whereas Neumann-type conditions-zero normal derivatives 
for both velocity components-are imposed at the outlet of the computational domain. It is well 

that these conditions are the simplest but, as a rule, the worst ‘open’ boundary conditions. 
Nevertheless, steady state numerical solutions have been obtained in our predictions for flows with 
R e  = 200,400, 600 and even such a ‘critical’ value as Re = 800 (critical not in the sense of some kind 
of flow transition but in the sense of involving a considerable and long-term scientific discus~ion~~).  
Figure 13 illustrates our steady state numerical results for Re = 800 via (a) equidistant streamlines and 
(b) isobars (see Reference 37 for a comparison). In all four cases (including Re = 800), reasonable 
qualitative agreement with benchmark s o l ~ t i o n s ’ ~ ~ ~  has been obtained. Some quantitative 
discrepancies in the sizes of recirculating zones at the upper and lower walls (especially for 
Re = 800) may be explained by the following considerations: first, we used a shorter channel length 
(16 instead of 30 as in Reference 37) along with less soft ‘open’ boundary conditions; secondly, our 
scheme provides only first-order-accurate results. Nevertheless, these results indicate that our approach 
is robust and applicable to modelling channel flows too. 

It is necessary to emphasize two main special features that have emerged in this study. First, the 
linearized schemes derived here have a very weak time step restriction (due to non-linearity). The time 



63 6 A. G. CHURBANOV, A. N. PAVLOVAND €? N. VABISHCHEVICH 

#,,-=o, ~min=-o.013 ~1,,,=1x + m i n = - ~ .  063 

( C )  

JImar=3' lo-', @min=-O. 081 

Figure 1 1. Time evolution of unsteady cavity flow for Re = 400: (a) t = 0.1; (b) t = 1; (c) t = 2; (d) t = 4; (e) t = 8 
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1 -' I 1 

Figure 12. Time evolution of unsteady cavity flow for Re = BOO: (a) t = 0.1; @) t = 1; (c) t = 2; (d) t = 4; (e) t = 8 
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C I '  9' 

Figure 13. (a) Streamlines and (b) isobars for flow over a backward-facing step, Re = 800 

step value is chosen moderate enough only in order to obtain sufficiently time-accurate solutions when 
transient problems are considered. 

Secondly, it was found that the maximum time step value rmaX at which convergence is achieved for 
the Peaceman-Rachford-type method is about 25 times smaller than z,, for the Douglas- Rachford- 
type scheme. Since both methods are accurate enough at time step values which are needed for 
convergence of the Peaceman-Rachford-type method, the Douglas-Rachford-type splitting method is 
certainly preferred over the Peaceman-Rachford technique. 

1. 

2. 

3. 

4. 

5. 

8. CONCLUSIONS 

Absolutely stable (in a linear sense) methods for solving the time-dependent incompressible 
Navier-Stokes equations using primitive variables and non-staggered grids are developed and 
verified in the present work. The operators of the linearized difference schemes are consistent 
with one another and inherit the fundamental properties of the corresponding differential 
operators of the initial differential equations. These schemes inherit a priori estimates for their 
solutions as well. 
Special second-order approximations based on central differences are used for convective terms. 
No upwinding or artificial viscosity is employed to monotonize the schemes. 
To avoid checker-board effects on the non-staggered grid, first-order opposite (forward and 
backward) differences are utilized to approximate the divergence and gradient operators. 
Practical calculations indicate that such approximations actually provide first-order accuracy of 
the numerical solution. The use of second-order approximations for these operators will be 
presented in the next part of this work. 
Of the two considered operator-splitting procedures adapted for time discretization, the Douglas- 
Rachford-type scheme is certainly preferred over the Peaceman-Rachford-type one from the 
viewpoint of stability. 
The issue of 'open' (outflow, non-Dirichlet) boundary conditions remains open (in a theoretical 
sense) in the present study; it is to be investigated (in the framework of the developed approach) 
in the immediate future. However, practical predictions of a backward-facing step flow with the 
simplest 'open' conditions (i.e. of the Neumann type for both velocity components at the outlet) 
indicate that the methods developed here remain robust and efficient for channel flow predictions 
as well. 
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